Et si la vie sur Terre avait commencé par de l'ARN, avant l'apparition de l'ADN et des protéines ? C'est l'hypothèse dite du Monde à ARN.
Détails et compléments dans le billet de blog qui accompagne la vidéo : https://scienceetonnante.com/blog/2025/05/16/lhypothese-du-monde-a-arn/
Merci à Philippe Nghe de l'ESPCI pour avoir répondu à mes questions !
Le serveur Discord de Science étonnante ➡️ https://discord.gg/GPamYjVYxA
00:00 Introduction
00:59 Les caractéristiques de la vie
04:01 LUCA, notre ancêtre commun
06:12 L'ARN
09:08 Les biopolymères programmables
13:28 L'ARN catalyseur : les ribozymes
17:09 L'expérience de Miller-Urey
19:27 Des nucléotides qui se forment spontanément ?
22:20 L'autoréplication de l'ARN en question
Écrit et réalisé par David Louapre © Science étonnante
Abonnez-vous : https://www.youtube.com/scienceetonnante
Me soutenir sur Tipeee : http://www.tipeee.com/science-etonnante
ou Patreon : https://www.patreon.com/scienceetonnante
Mes livres : https://scienceetonnante.com/livres/
Facebook : http://www.facebook.com/sciencetonnante
Twitter : http://www.twitter.com/dlouapre
Bibliographie :
Ferris, J. P., et al. (1996). Synthesis of long prebiotic oligomers on mineral surfaces. Nature, 381(6577), 59–61. https://www.nature.com/articles/381059a0
Johnston, W. K., et al. (2001). RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science, 292(5520), 1319–1325. https://doi.org/10.1126/science.1060786
Doudna, J. A., & Cech, T. R. (2002). The chemical repertoire of natural ribozymes. Nature, 418(6894), 222–228. https://doi.org/10.1038/418222a
Seelig, B. (2008). An autocatalytic network for ribozyme self-construction. Nature Chemical Biology, 4(11), 654–655. https://doi.org/10.1038/nchembio1108-654
Lincoln, T. A., & Joyce, G. F. (2009). Self-sustained replication of an RNA enzyme. Science, 323(5918), 1229–1232. https://doi.org/10.1126/science.1167856
Powner, M. W., et al. (2009). Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459(7244), 239–242. https://doi.org/10.1038/nature08013
Mulkidjanian, A. Y., et al. (2012). Origin of first cells at terrestrial, anoxic geothermal fields. PNAS, 109(14), E821–E830. https://doi.org/10.1073/pnas.1117774109
Robertson, M. P., & Joyce, G. F. (2012). The origins of the RNA world. Cold Spring Harbor Perspectives in Biology, 4(5), a003608. https://doi.org/10.1101/cshperspect.a003608
Cech, T. R. (2012). The RNA world in context. Cold Spring Harbor Perspectives in Biology, 4(7), a006742. https://doi.org/10.1101/cshperspect.a006742
Higgs, P. G., & Lehman, N. (2015). The RNA world: Molecular cooperation at the origins of life. Nature Reviews Genetics, 16(1), 7–17. https://doi.org/10.1038/nrg3841
Horning, D. P., & Joyce, G. F. (2016). Amplification of RNA by an RNA polymerase ribozyme. PNAS, 113(35), 9786–9791. https://doi.org/10.1073/pnas.1610103113
Meinert, C., et al. (2016). Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science, 352(6282), 208–212. https://doi.org/10.1126/science.aad8137
Usami, K., & Okamoto, A. (2017). Hydroxyapatite: Catalyst for a one-pot pentose formation. Organic & Biomolecular Chemistry, 15(42), 8888–8893. https://doi.org/10.1039/C7OB02051A
Kompanichenko, V. N. (2019). Exploring the Kamchatka geothermal region in the context of life’s beginning. Life, 9(2), 41. https://doi.org/10.3390/life9020041
Hud, N. V. (2019). RNA nucleosides built in one prebiotic pot. Science, 366(6461), 32–33. https://doi.org/10.1126/science.aaz1130
Becker, S., et al. (2019). Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science, 366(6461), 76–82. https://doi.org/10.1126/science.aax2747
Damer, B., & Deamer, D. (2020). The hot spring hypothesis for an origin of life. Astrobiology, 20(4), 429–452. https://doi.org/10.1089/ast.2019.2045
Muchowska, K. B., et al. (2020). Non-enzymatic metabolic reactions and life’s origins. Chemical Reviews, 120(15), 7708–7744. https://doi.org/10.1021/acs.chemrev.0c00191
Wołos, A., et al. (2020). Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science, 369(6511), eaaw1955. https://doi.org/10.1126/science.aaw1955
Blokhuis, A., Lacoste, D., & Nghe, P. (2020). Universal motifs and the diversity of autocatalytic systems. Proceedings of the National Academy of Sciences, 117(41), 25230–25236. https://doi.org/10.1073/pnas.2013527117
Yu, A. M., et al. (2021). Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates. Molecular Cell, 81(4), 870–883.e10. https://doi.org/10.1016/j.molcel.2020.12.017
Pavlinova, P., Lambert, C. N., Malaterre, C., & Nghe, P. (2022). Abiogenesis through gradual evolution of autocatalysis into template-based replication. FEBS Letters, 597(3), 344–379. https://doi.org/10.1002/1873-3468.14507
Détails et compléments dans le billet de blog qui accompagne la vidéo : https://scienceetonnante.com/blog/2025/05/16/lhypothese-du-monde-a-arn/
Merci à Philippe Nghe de l'ESPCI pour avoir répondu à mes questions !
Le serveur Discord de Science étonnante ➡️ https://discord.gg/GPamYjVYxA
00:00 Introduction
00:59 Les caractéristiques de la vie
04:01 LUCA, notre ancêtre commun
06:12 L'ARN
09:08 Les biopolymères programmables
13:28 L'ARN catalyseur : les ribozymes
17:09 L'expérience de Miller-Urey
19:27 Des nucléotides qui se forment spontanément ?
22:20 L'autoréplication de l'ARN en question
Écrit et réalisé par David Louapre © Science étonnante
Abonnez-vous : https://www.youtube.com/scienceetonnante
Me soutenir sur Tipeee : http://www.tipeee.com/science-etonnante
ou Patreon : https://www.patreon.com/scienceetonnante
Mes livres : https://scienceetonnante.com/livres/
Facebook : http://www.facebook.com/sciencetonnante
Twitter : http://www.twitter.com/dlouapre
Bibliographie :
Ferris, J. P., et al. (1996). Synthesis of long prebiotic oligomers on mineral surfaces. Nature, 381(6577), 59–61. https://www.nature.com/articles/381059a0
Johnston, W. K., et al. (2001). RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science, 292(5520), 1319–1325. https://doi.org/10.1126/science.1060786
Doudna, J. A., & Cech, T. R. (2002). The chemical repertoire of natural ribozymes. Nature, 418(6894), 222–228. https://doi.org/10.1038/418222a
Seelig, B. (2008). An autocatalytic network for ribozyme self-construction. Nature Chemical Biology, 4(11), 654–655. https://doi.org/10.1038/nchembio1108-654
Lincoln, T. A., & Joyce, G. F. (2009). Self-sustained replication of an RNA enzyme. Science, 323(5918), 1229–1232. https://doi.org/10.1126/science.1167856
Powner, M. W., et al. (2009). Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459(7244), 239–242. https://doi.org/10.1038/nature08013
Mulkidjanian, A. Y., et al. (2012). Origin of first cells at terrestrial, anoxic geothermal fields. PNAS, 109(14), E821–E830. https://doi.org/10.1073/pnas.1117774109
Robertson, M. P., & Joyce, G. F. (2012). The origins of the RNA world. Cold Spring Harbor Perspectives in Biology, 4(5), a003608. https://doi.org/10.1101/cshperspect.a003608
Cech, T. R. (2012). The RNA world in context. Cold Spring Harbor Perspectives in Biology, 4(7), a006742. https://doi.org/10.1101/cshperspect.a006742
Higgs, P. G., & Lehman, N. (2015). The RNA world: Molecular cooperation at the origins of life. Nature Reviews Genetics, 16(1), 7–17. https://doi.org/10.1038/nrg3841
Horning, D. P., & Joyce, G. F. (2016). Amplification of RNA by an RNA polymerase ribozyme. PNAS, 113(35), 9786–9791. https://doi.org/10.1073/pnas.1610103113
Meinert, C., et al. (2016). Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science, 352(6282), 208–212. https://doi.org/10.1126/science.aad8137
Usami, K., & Okamoto, A. (2017). Hydroxyapatite: Catalyst for a one-pot pentose formation. Organic & Biomolecular Chemistry, 15(42), 8888–8893. https://doi.org/10.1039/C7OB02051A
Kompanichenko, V. N. (2019). Exploring the Kamchatka geothermal region in the context of life’s beginning. Life, 9(2), 41. https://doi.org/10.3390/life9020041
Hud, N. V. (2019). RNA nucleosides built in one prebiotic pot. Science, 366(6461), 32–33. https://doi.org/10.1126/science.aaz1130
Becker, S., et al. (2019). Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science, 366(6461), 76–82. https://doi.org/10.1126/science.aax2747
Damer, B., & Deamer, D. (2020). The hot spring hypothesis for an origin of life. Astrobiology, 20(4), 429–452. https://doi.org/10.1089/ast.2019.2045
Muchowska, K. B., et al. (2020). Non-enzymatic metabolic reactions and life’s origins. Chemical Reviews, 120(15), 7708–7744. https://doi.org/10.1021/acs.chemrev.0c00191
Wołos, A., et al. (2020). Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science, 369(6511), eaaw1955. https://doi.org/10.1126/science.aaw1955
Blokhuis, A., Lacoste, D., & Nghe, P. (2020). Universal motifs and the diversity of autocatalytic systems. Proceedings of the National Academy of Sciences, 117(41), 25230–25236. https://doi.org/10.1073/pnas.2013527117
Yu, A. M., et al. (2021). Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates. Molecular Cell, 81(4), 870–883.e10. https://doi.org/10.1016/j.molcel.2020.12.017
Pavlinova, P., Lambert, C. N., Malaterre, C., & Nghe, P. (2022). Abiogenesis through gradual evolution of autocatalysis into template-based replication. FEBS Letters, 597(3), 344–379. https://doi.org/10.1002/1873-3468.14507